
A Decade After Stuxnet: How Siemens S7 is Still
an Attacker’s Heaven

Colin Finck
c.finck@enlyze.com

Tom Dohrmann
t.dohrmann@enlyze.com

ENLYZE GmbH, Heliosstraße 6a, 50825 Köln, Germany

Industrial Control Systems have long evolved from specialized electronics communicating
over proprietary bus systems to fully-fledged embedded computers based on commodity
Ethernet connections. The Stuxnet computer worm of 2010 demonstrated to the general
public that this development makes Industrial Control Systems susceptible to cyberattacks
with physical consequences [10]. Siemens as the vendor of the affected Programmable Logic
Controllers (PLCs) has released multiple new products since then, which double down on
Ethernet connectivity in company networks and are expected to conform to higher security
standards.
In this paper, we reverse-engineer the Siemens S7-1500 Software Controller PLC up to

the communication protocol and show the violation of fundamental security principles.
We show that substantial efforts have been put into obfuscating keys and code of the
communication as well as modifying established cryptography primitives—all without
increasing the effective security level. Along the way, we release a few tools to help with
reverse-engineering that particular PLC firmware. Even though the analyzed variant of
the protocol has been deprecated in 2022, it is still the most widespread one and updating
to a newer variant is non-trivial. Unlike previous publications on this topic, we put an
emphasis on providing sufficient details to enable other people to reproduce our research
and build up on it. To that end, the S7-1500 Software Controller has been chosen, because
it resembles the pervasive S7-1500 hardware PLC series while being a software-only PLC,
making it very accessible to the broader research community.

1. Introduction

With their ubiquity in the manufacturing and processing industry, their importance for critical
infrastructure such as power plants, grids or pipelines, and further applications in adjacent sectors
like building automation, Industrial Control Systems (ICSs) can truly be considered the backbone of
modern everyday life. A central component of today’s Industrial Control Systems are Programmable
Logic Controllers (PLCs). PLCs are compact modules that provide multiple input and output pins for
working with analog and digital signals. Additional interfaces to bus networks allow for the connection
of further peripherals such as sensors, actors or distributed I/O blocks. Due to this flexibility and
their ability to be programmed graphically, PLCs have long replaced hard-wired logic.

From a Computer Science perspective, most current PLCs can be classified as embedded computers,
with some of them being only little more than commodity x86 hardware in industrial cases. Former
vendor-specific ports for connecting to proprietary bus interfaces have mostly been replaced by
standard Ethernet ports. The same Ethernet ports are also used for programming the PLC. While
this simplifies cabling and allows for easy integration into company networks, it also introduces a new
path for adversaries to carry out cyberattacks with physical consequences.
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Figure 1: A hardware PLC of the S7-1500 series [23]

The IEC 61131-3 norm standardized programming languages for PLCs, including variable declara-
tions and their data types [24]. All relevant market participants follow this standard. Although IEC
61131-3 does a good job at unifying education on PLC programming and making PLC source code
vendor-agnostic, it falls short on interoperability of PLC hardware and PLC communication proto-
cols. This is one reason why most industrial automation companies created proprietary hardware and
communication ecosystems. They usually have an interest in keeping up existing incompatibilities to
other vendors in order to benefit from the resulting vendor lock-ins. Despite efforts such as OPC UA
to exchange data between automation products of different companies, native vendor-specific commu-
nication protocols remain the only first-class citizens in the automation ecosystem. Consequently, a
typical situation in the real world is a PLC by one vendor communicating with a Human-Machine
Interface (HMI) by the same vendor using a vendor-proprietary protocol. As long as this situation
persists, reverse-engineering PLCs and their communication protocols is not an exclusive domain of
security researchers. It also becomes a necessity for companies like ENLYZE, who need to reimple-
ment the communication protocols to record process variables from all kinds of PLCs. This task of
reverse-engineering a target system for creating interoperability is also a prime example for legally
permitted reverse-engineering under EU law [21].
The global PLC market is dominated by five companies that account for over 80% of the market.

Siemens is leading this market with a share of around 31% [18]. A Siemens Industrial Control System
featuring PLCs of the Siemens S7-300 and S7-400 series was the target of the infamous Stuxnet attack
of 2010, which manipulated the control of specific frequency converters and reportedly destroyed
around one-fifth of Iran’s nuclear centrifuges [4, 10]. The current generation of Siemens PLCs called
S7-1500 (Figure 1) has been introduced in 2012. Due to the revamped hardware and software of that
generation as well as the time elapsed since the Stuxnet attack, customers can rightfully expect the
S7-1500 series to feature a comprehensive security concept that guards against such attacks.
In this paper, we reverse-engineer the Siemens S7-1500 Software Controller PLC up to the commu-

nication protocol. Released in 2015, the S7-1500 Software Controller implements the features of an
S7-1500 hardware PLC in a standalone x86 binary that is supposed to be run by a Siemens hypervi-
sor next to a standard Windows operating system on a Siemens industrial computer. We show that
Siemens put substantial efforts into obfuscation techniques and reinventing cryptographic primitives
without improving the overall security. Unlike previous publications on this topic, we aim to provide
sufficient details to enable other researchers to reproduce our findings and build up on them. This
is common practice in the cybersecurity community and the only way to achieve enduring security,
hence the industrial automation domain must not be exempted from this.

2. Legal and Ethical Considerations

Legal and ethical considerations played a major role in conducting our research and publishing this
paper. While our focus has always been on researching PLCs to write compatible clients for reading
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process variables, we came across a lot of security-relevant peculiarities of the communication protocol.
Publishing such details is always a double-edged sword: On the one hand, this is absolutely necessary to
debunk false claims about the security of a device and advance the state of PLC security research. On
the other hand, the same information could potentially aid malicious actors if disclosed unresponsibly.
Further trade-offs have been discussed in [27] and were considered for this publication.

For this paper, we have decided to publish all our developed tools that help with reverse-engineering
the PLC firmware. This allows other PLC security researchers to get on par with our research and
with the state of previous publications, such as [1] and [3]. These tools do not disproportionally
help malicious actors: Getting new insights still requires reverse-engineering, which continues to be a
manual and time-consuming process.
We have also decided to publish all details regarding public cryptography keys. They are absolutely

necessary to reproduce and verify our findings from a researcher’s perspective. They are also required
to achieve the initial goal of writing an independent client that can interoperate with modern Siemens
PLCs. Note that this application of reverse-engineering is explicitly permitted under EU law [21].
At the same time, we are deliberately not releasing example code for an independent PLC client.

Such a tool would only provide limited additional value to researchers, but disproportionally aid “script
kiddies” and other adversaries in abusing industrial control systems.
Ironically, publishing these cryptographic details even has the potential to increase the effective

security of PLC communication: We have encountered third-party implementations of PLC protocols,
which do not implement the cryptographic parts correctly and use hardcoded values in parts where
random numbers are required for a secure operation. Releasing our research could provide the required
information to these vendors to fix their insecure implementations.
We have deliberately decided not to publish any PLC private keys in this paper. They turned out

to be the most heavily guarded pieces of the firmware. Furthermore, they were not necessary to reach
our goal of writing an independent PLC client.
The PLC communication protocol that we are analyzing in this paper has been deprecated by

Siemens in 2022 [25], following a successful extraction of a PLC private key by Claroty [29]. As a
consequence, Siemens has released a new version of the communication protocol based on the publicly
standardized TLS 1.3 layer.
By publishing details about the legacy protocol, we are therefore not disclosing a new vulnerability.

If we had found one during our research, we would have first initiated a coordinated disclosure process
with Siemens ProductCERT. However, we would like to emphasize that the Siemens update policies,
missing incentives for machine manufacturers, and the general infeasibility of quickly rolling out such
major updates means that the new protocol has hardly reached existing machines [12]. Hence, the
legacy protocol is likely going to stay with us for years to come, and the aforementioned precautions
are still important.
Finally, choosing to publish on the S7-1500 Software Controller and not the S7-1500 hardware PLC

has been part of our legal and ethical considerations:

1. Unlike the S7-1500 hardware PLC, the S7-1500 Software Controller runs next to a Windows
operating system on a regular computer. The Windows OS as well as Siemens software written
for Windows come with established automatic update processes. If any firmware update becomes
necessary, this should be easier to manage for an S7-1500 Software Controller than for a physical
S7-1500 PLC.

2. Although both types follow a similar design, the S7-1500 Software Controller communication
protocol is sufficiently different from that of the S7-1500 hardware PLC. Any outcome resulting
from this publication would only affect the Software Controller and not the more popular and
harder to update hardware PLC.

3. Being a software-only PLC, the S7-1500 Software Controller is very accessible to the broader
research community. This enables researchers to verify our findings easily, possibly without
purchasing expensive hardware, but does not provide an edge to adversaries.
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3. Relation to Previous Work

Multiple research teams have published on the security of the Siemens S7 PLC series before. Current
versions of the S7-1200 and S7-1500 hardware PLCs as well as the S7-1500 Software Controller feature
an encrypted communication protocol, which is what we are focusing on. This excludes several older
publications on these PLC types, such as [26] from 2016, which exclusively deal with an abandoned
unencrypted version of the communication protocol.

When starting to reverse-engineer the encrypted protocol of the S7-1500 in mid-2019 and researching
prior work, only a single relevant publication from 2017 by Lei et al. turned up [19]. They provide
a low-level analysis of the encryption bytes transmitted over the wire when connecting to an S7-1200
or S7-1500 with then-current firmwares using the Siemens TIA Portal programming software. This
analysis is enriched with screenshots of the corresponding memory bytes in a debugger. While giving
first hints as to what functions are involved in the encryption and their inputs and outputs, the work
does not provide a description of the underlying algorithms. But unlike most publications on the topic,
the paper by Lei et al. leaves all screenshots unredacted, making it easy to reproduce the findings
when using the same version of the Siemens TIA Portal software.
Multiple parties were independently researching the latest S7 communication protocol in 2019.

Shortly after our first successful implementation, Weißberg released his bachelor’s thesis on the analysis
of the protocol with a focus on the used cryptography [30]. Around the same time, Biham et al.
presented a similar analysis at Black Hat USA 2019, including an application of the research in the
form of a malicious engineering station [2]. Both publications build up on the work by Lei et al. and
provide a detailed analysis of the message exchange, the theory behind it, and the used cryptographic
primitives. They also give a first impression of the extensive code obfuscation measures taken by
Siemens. Due to these measures and decisions taken by the authors, some important parts of the key
exchange remain undocumented or were deliberately left out. As a result, the work can hardly be
reproduced independently and these parts need to be researched from scratch.
Whereas the previously named publications analyzed the PLC from the perspective of the TIA Portal

client software, Abbasi et al. presented an analysis of an S7-1200 from the hardware and operating
system side at Black Hat Europe 2019 [1]. Although their research does not cover the communication
protocol, it provides valuable insights into the proprietary Siemens ADONIS operating system running
on Siemens PLCs, and techniques into reverse-engineering it. Some of these insights aided our research
on the S7-1500 Software Controller.
Team82 at Claroty has recently built up on the published research and developed an exploit to

extract hardcoded private keys of S7-1200 and S7-1500 PLCs [29]. Disguising an application as Siemens
TIA Portal and communicating with a PLC was already possible before without knowing the private
keys. However, Team82 has also revealed that the same keys can be used to extract passwords from
the PLC and thereby bypass access level protections. This proves once more that custom cryptography
with code obfuscation cannot make up for the mistake of relying on hardcoded private keys. Their
publication led to the introduction of a new TLS-based cryptography now available on all S7-1200
and S7-1500 PLCs (both physical and software-only models). The previous communication protocol
has been deprecated, but is likely going to stay with us for decades due to long machine lifetimes, the
cost of updates, and the inability of applying updates in many setups [12].
It should be noted that all aforementioned publications exclusively analyze the S7-1200 and S7-

1500 hardware PLCs. A quick look at the communication between TIA Portal and the S7-1500
Software Controller reveals that the cryptographic details are significantly different, and these have
not been published before. First research on the S7-1500 Software Controller has been presented by
Bitan & Dankner at Black Hat USA 2022 [3]. Their work shows a novel way of breaking one layer of
obfuscation that Siemens added exclusively for the S7-1500 Software Controller. Although the authors
spend a lot of time explaining their methodology, the publication falls short on details to make the
result reproducible. In fact, screenshots have been deliberately redacted. This paper adds the missing
details and builds up on the research to deliver a usable framework for reverse-engineering the S7-1500
Software Controller, as well as the first full description of its communication protocol.
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Finally, it must be noted that all publications on the modern S7 communication protocol make
heavy use of the S7comm Wireshark dissector plugin by Thomas Wiens [31]. His long-time and
continuous work on the dissector deserves most credit here. To this end, our paper also follows the
naming introduced by him and calls the protocol S7CommPlus hereafter.

4. Reverse Engineering Obstacles and Strategies

Siemens provides the S7-1500 Software Controller in several flavors: One option is to obtain it
preinstalled on an embedded computer with DIN rail mounting. That computer is called “ET 200SP
Open Controller” or “CPU 1515SP” and is available in multiple configurations, all having order
numbers starting with “6ES7672-2”. Multiple corresponding controller firmwares exist and are called
“CPU 1505S” or “CPU 1505SP” (order numbers starting with “6ES7672-5”).
Alternatively, you can obtain the S7-1500 Software Controller as a software-only package to be

installed on specific Siemens industrial computers. The corresponding controller firmwares are called
“CPU 1507S” and “CPU 1508S” (order numbers starting with “6ES7672-7” resp. “6ES7672-8”).
In the following sections, we obtain a specific version of the firmware and describe our journey of

reverse-engineering it.

4.1. Obtaining the Firmware Image

No matter what S7-1500 Software Controller model you want to analyze, the firmware is always a
single self-contained binary called CPU.ELF. After installation, this file can be found in C:\Boot\

Siemens\SWCPU on the simultaneously running Windows system. It is accompanied by a Siemens
hypervisor that is split up between the two files VMM_1ST_STAGE.ELF and VMM_2ND_STAGE.ELF. You
can find them in C:\Boot\Siemens\SIMATIC_RT_VMM.
In order to make our research reproducible, we didn’t use a random firmware version from some ma-

chine, but extracted a specific one from a downloadable update package. Hence, the following chapters
are specific to the firmware obtained via the SIMATIC_CPU_1505SP_V21_9.exe update package with
the SHA-256 checksum 68a192e9d6203b74f546275b6393f1fd9e410983b3642c1ac3400b875a2af2c2.
This package can be run on an arbitrary Windows computer to extract the contained files into a di-
rectory. Afterwards, we opened the Data1.cab file from the extracted InstData\S7_Vmm\Media sub-
directory and further extracted the VMM_2ND_STAGE.ELF_4B3AB761_8023_596B_91E6_4235FAF5D2F3

file. Likewise, we extracted CPU.ELF_C924BFD8_60A0_520A_A2EF_CBE66BEA1F2B from the Data1.cab
file of InstData\CPU1505SP\Media.

4.2. Decrypting the Firmware Image

While VMM_1ST_STAGE.ELF and VMM_2ND_STAGE.ELF are standard x86 ELF binaries, the actual
firmware in CPU.ELF is encrypted. Bitan & Dankner have shown in [3] that the decryption code
is fully contained in VMM_2ND_STAGE.ELF. Instead of performing a time-consuming static analysis
and reimplementation, they have developed a harness to jump directly to the decryption code in
VMM_2ND_STAGE.ELF and run it on a standard Linux system using the Intel Pin framework [16].
Unfortunately, their harness has not been released to the public. As a result, we had to redo their
work and implement our own harness to decrypt the CPU.ELF file. This has been released at [11].
Note that this is not a new method, but utilizes the same Intel Pin framework. All credits for

originally inventing this approach go to Bitan & Dankner.
Additionally, the hardcoded memory addresses in our harness are specific to the VMM_2ND_STAGE.ELF

of the CPU 1505SP firmware version 21.9. Your mileage may vary with different firmware versions.
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4.3. Dynamic Analysis

The ADONIS kernel found in the S7-1500 Software Controller firmware appears to be mainly written
in C++ and makes heavy use of virtual inheritance. Reversing such code statically can be difficult,
so our first attempt at gaining an understanding about the inner workings of the kernel was to boot
it and analyze it dynamically.

The decoded firmware image contains a multiboot header, but it’s at byte address 0x37C0 outside
the first 8 KiB as expected by QEMU. Instead of modifying the QEMU multiboot loader accordingly,
we implemented a small UEFI-based bootloader in Rust to load the kernel. This bootloader is now
available at [7]. It has later been extended to patch the loaded kernel to our needs, for example to
hook various debug print functions.
The kernel uses the hypercall instructions VMCALL and VMMCALL to communicate with the hypervisor.

The hypercalls (Table 5) don’t seem to follow any well-known standard and so are incompatible with
KVM, Hyper-V, and Xen hypervisors. Instead of relying on hardware virtualization and the kernel for
handling those hypercalls, we chose to modify QEMU’s TCG emulator to implement the hypercalls.
ADONIS expects certain custom PCI devices to be present. These devices are emulated by the

hypervisor. Their purposes are not yet known. QEMU was modified to add these devices and emulate
them in such a way that the kernel progresses further at boot. Our modifications have been made
available at [8].
Dynamic analysis was eventually abandoned, because it turned out to be more work than expected

to get the kernel to boot and static analysis proved sufficient for our needs. We are releasing our work
in progress anyway to let other researchers pick up from where we left off.

4.4. Static Analysis

The S7-1500 Software Controller code has been statically analyzed using the Ghidra software reverse
engineering suite [22]. This initially proved challenging, because the ADONIS kernel runs in 64-bit
long mode, but only uses 32-bit pointer addresses. This x32-like ABI was not natively supported by
the tested reverse engineering tools (Ghidra, IDA, Binary Ninja), which all expect pointers to be 64-bit
values when executing 64-bit code. To improve decompiler results, we modified Ghidra’s SLEIGH files
for x86 64 to truncate addresses to 32 bits. Our modifications have been made available at [6].

The firmware contains C++ Run-Time Type Information (RTTI) records that provide valuable
insights into class names and the inheritance structure. We attempted to use the Ghidra-Cpp-Class-
Analyzer plugin [28] to recover type information from RTTI and reconstruct vtables, but the original
version failed on duplicate entries in the firmware binary. This issue could eventually be fixed by us
and the fix has been submitted upstream [9]. The fixed analyzer now provides a detailed overview of
the C++ classes in the firmware binary. In particular, many of the virtual classes we were interested
in turned out to only have a single implementation.
Furthermore, names of several previously unidentified functions could be retrieved via their calls to

the logging facility. A Ghidra script has been written to analyze the entire binary for such calls and
rename functions accordingly. This script is now available as part of [6].
Eventually, we identified two functions using the magic value 0xfee1dead found in the handshake.

Starting from there we were able to identify other code used in the handshake.

5. Handshake of the Communication Protocol

The Siemens S7-1200 and S7-1500 PLCs, physical and software-only, communicate with the TIA
Portal client software and HMIs over the S7CommPlus protocol. This is a binary protocol, which
can be understood to a high degree these days thanks to the S7comm Wireshark dissector plugin
by Thomas Wiens [31]. Each S7CommPlus packet is embedded in a Connection-Oriented Transfer
Protocol (COTP) [15] packet, which is itself embedded in a Transport Packet (TPKT) [17] sent over
a TCP/IP connection. We can only assume historical reasons for this peculiar stack of deprecated
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Figure 2: Legacy handshake of the S7CommPlus protocol

protocols, considering that the legacy S7 protocol used by the S7-200/300/400 series of PLCs already
featured a similar architecture.
After initiating a connection from TIA Portal to the PLC via TCP/IP and the COTP Connect

Request message, the PLC expects a cryptographic handshake. For Siemens PLCs since 2013 and the
S7-1500 Software Controller, this handshake is based on heavily obfuscated code and modifications
to established cryptographic primitives. Although Siemens deprecated this part when introducing
TLS 1.3 transport encryption in 2022, you can only expect to see TLS in new automation projects.
Existing projects would require a firmware upgrade on all affected devices and a (paid) upgrade to the
TIA Portal V17 programming software. Currently, most machine manufacturers have no incentives
to roll out such upgrades to their customers [12]. As a result, the legacy handshake is still far more
widespread and expected to stay relevant for a long time. Our following analysis therefore focuses on
the legacy handshake specific to the S7-1500 Software Controller.
The legacy communication protocol of the S7-1500 Software Controller uses an asymmetric

challenge-response handshake (Figure 2). First, TIA Portal sends a CreateObject request and re-
ceives a challenge in the corresponding CreateObject response. This challenge is encrypted and placed
in a Blob structure. In addition to the challenge, TIA Portal also encrypts a randomly generated sym-
metric key and places it in the same Blob structure. This key is later used to sign messages. The Blob
structure is sent to the PLC in a SetMultiVariables request (Figure 3). The PLC decrypts and verifies
the values in the Blob structure. The handshake and algorithms specific to S7-1200/1500 hardware
controllers have been published in detail in [2, 19, 30] except for the core asymmetric cryptographic
operations. These operations are partly obfuscated in both the PLC firmware and TIA Portal.
It should be noted that no part of this handshake uses any user-controlled secret. The PLC has

a fixed public-private key pair and the remaining secrets are randomly generated at each connection
attempt. This is why TIA Portal can connect to most PLCs without any authorization prompt, and
so can third-party clients implementing the same protocol. It is possible to set a password and access
levels, but our experience shows that this is hardly done in practice [12]. Additionally, Claroty has
even managed to break into password-protected PLCs after extracting the PLC private key [29].
The algorithms used to encrypt the challenge and symmetric key differ between physical PLCs and

the S7-1500 Software Controller. This becomes obvious once you notice the different sizes of the public
key and the Blob structure between the variants.
The following subsections explain the cryptography unique to the S7-1500 Software Controller. They

are not an exact description of what TIA Portal and the firmware do as multiple layers of obfuscation
irrelevant to the actual cryptography have been omitted.
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Figure 3: Blob structure in Wireshark

5.1. Asymmetric Key Exchange

The key exchange (Algorithm 1) is done using the Elliptic Curve Diffie-Hellman (ECDH) key exchange
over a 192-bit prime field elliptic curve with these parameters:

p = 0xffffffffffffffffffffffffffffffffffffffffffffff13

a = -1

b = 0x6241e52b7bd8790514ebe1e51c8368cd9d56e1ae21de9cbc

Gx = 0x6f74ce776d67b1d7a49f8cf0e26b77bc677cf771962e4427

Gy = 0x7eaa7f6516d614857b4cda3e3f2fb5c642fc8285fb86575f

These parameters don’t match any standardized curves and seem to be Siemens specific.

Algorithm 1 Elliptic Curve Diffie-Hellman Key Exchange performed by the Client

1: procedure ECDH(PlcPublicKey)
2: Nonce← rng(24)
3: ClientPublicKey ← Nonce ∗G
4: DerivedSharedSecret← Nonce ∗ PlcPublicKey
5: return ClientPublicKey,DerivedSharedSecretx
6: end procedure

The PLC’s public key is

PlcPublicKeyx = 0x8e6d4846b080f387e3d48858c54a40b7fb28dc02b706e25f

PlcPublicKeyy = 0x12fe2110375f5e3627148ac04f1c5473042275e4b1091567

This key is shipped with TIA Portal in C:\Program Files\Siemens\Automation\Portal V17\

Data\Hwcn\Custom\Keys\Modules.PcStation.mpk, which can be opened as a zip file. In that zip
file, the public key for the S7-1500 Software Controller CPU 1505S is found in 6ES7672-5AC00-0YA0_

V1.0.key. The .key files are zlib-compressed and parts of the resulting content are base64-encoded
in addition. Both layers can be trivially decoded using e.g. CyberChef [14]. To our knowledge, this
public key also works for all other S7-1500 Software Controller CPUs in existence. It definitely does
not work for S7-1200 and S7-1500 hardware PLCs.
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5.2. Deriving Shared Keys

The 192-bit derived shared secret generated by the asymmetric key exchange is used to derive two
shared keys (Algorithm 2). The algorithm has three steps:

1. The following matrix of values in the curve’s prime field (ScrambleMatrix) is raised to the
derived shared secret:(
0xa5e873221ea059a595ba61bf27f9cdd5954ef57a747978e2 0x71ded36d796ac873a589cfe8e2831af1297e7e279053186c

0x55136a2069fe9c09984dcb47174c5b77d9c8b4a3db52cd7e 0x5a178cdde15fa65a6a459e40d806322a6ab10a858b868633

)
2. The resulting matrix is hashed using SHA-256, the hash is truncated, and the result is hashed

again using SHA-256.

3. The resulting digest is split into two parts. Each part is separately encrypted using a modified
AES algorithm and returned as a shared key.

To our knowledge, this algorithm has not been published before and Siemens invented it specifically
for the S7-1500 Software Controller. Some steps have apparently been added solely for obfuscation
purposes. An example is truncating the output and hashing it a second time in step 2. This step
provides no additional security over hashing the output once using the proven SHA-256 hash function.

Algorithm 2 High-level description of the key derivation algorithm

1: procedure DeriveSharedKeys(DerivedSharedSecret)
2: M ← ScrambleMatrixDerivedSharedSecret

3: Digest0 ← SHA256(M)
4: Digest1 ← SHA256(Digest0[0 : 23])
5: Key0 ←ModifiedAES(Digest1[0 : 15])
6: Key1 ←ModifiedAES(Digest1[16 : 31])
7: return Key0,Key1
8: end procedure

The modified AES algorithm (Algorithm 3) roughly follows the same steps as regular AES: An
additional step has been added at the beginning and the SubBytes and MixColumns steps have been
modified. The algorithm has been shortened to 5 rounds and the round keys are hardcoded.

Algorithm 3 Top level description of the modified AES algorithm

1: procedure ModifiedAES(S)
2: S ← Reorder(S)
3: S ←ModifiedRound(S, 6d3d0d8dc4bc3c2c5d060ed4beef620a, 0x34, 0x6d, 0)
4: S ←ModifiedRound(S, b1a3b9553037fb819fba35d5a1a91f51, 0xf1, 0x82, 1)
5: S ←ModifiedRound(S, f01b26b5138997cab2b1275b65934c7a, 0x06, 0xdf, 2)
6: S ←ModifiedRound(S, da3b3bf7bb85e77422c5268502742193, 0xa2, 0x4a, 3)
7: S ←ModifiedRound(S, dd13a6e62620cdf12621f699ea9ac26e, 0xb7, 0x30, 4)
8: return S
9: end procedure

10:

11: procedure ModifiedRound(S,K, a, b, Round)
12: S ← AddRoundKey(S,K)
13: S ←ModifiedSubBytes(S, a, b)
14: S ← ShiftRows(S)
15: S ←ModifiedMixColumns(S,Round)
16: return S
17: end procedure
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The newly introduced Reorder step (Algorithm 4) applies a fixed permutation to the initial state.

Algorithm 4 The newly introduced Reorder step

1: procedure Reorder(S)
2: X ← 0
3: Y ← 1
4: S′ ← []
5: for i← 0 to 15 do
6: Index← Y ∗ 4 +X
7: S′

Index ← Si

8: X ← (X + 1) mod 4
9: if X = 0 then

10: Y ← (Y + 1) mod 4
11: end if
12: if i is even then
13: Y ← (Y + 1) mod 4
14: end if
15: end for
16: return S′

17: end procedure

The Reorder step can also be described by this matrix:

S′ =


S12 S1 S2 S7

S0 S5 S6 S11

S4 S9 S10 S15

S8 S13 S14 S3


The SubBytes step (Algorithm 5) has been modified to xor a constant into both the index and

substituted byte each.

Algorithm 5 The modified SubBytes step

1: procedure ModifiedSubBytes(S, a, b)
2: for i← 0 to 15 do
3: Index← Si ⊕ a
4: SubByte← AESSBoxIndex
5: Si ← SubByte⊕ b
6: end for
7: return S
8: end procedure

The MixColumns step (Algorithm 6) has been modified in two ways: The polynomial is different
depending on the round and column, and the columns are transposed into rows.
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Algorithm 6 The modified MixColumns step

1: procedure ModifiedMixColumns(S,Round)
2: M0:3 ←ModifiedMixColumn((S0, S4, S8, S12), Round, 0)
3: M4:7 ←ModifiedMixColumn((S1, S5, S9, S13), Round, 1)
4: M8:11 ←ModifiedMixColumn((S2, S6, S10, S14), Round, 2)
5: M12:15 ←ModifiedMixColumn((S3, S7, S11, S15), Round, 3)
6: return M
7: end procedure
8:

9: procedure ModifiedMixColumn(C,Round,ColumnIndex)
10: Rotate C by ColumnIndex positions to the right.
11: SubroundV alue← (0, 0, 0, 0)
12: if Round = 3 & ColumnIndex = 0 then
13: SubroundV alue0 ← C3

14: end if
15: if Round = 2 & ColumnIndex = 1 then
16: SubroundV alue1 ← C2

17: end if
18: if Round = 1 & ColumnIndex = 2 then
19: SubroundV alue2 ← C1

20: end if
21: if Round = 4 & ColumnIndex = 3 then
22: SubroundV alue3 ← C0

23: end if
24: M0 ← C1 ⊕ C2 ⊕ C3 ⊕GfMult2(C0 ⊕ C1 ⊕ SubroundV alue0)
25: M1 ← C0 ⊕ C2 ⊕ C3 ⊕GfMult2(C1 ⊕ C2 ⊕ SubroundV alue1)
26: M2 ← C0 ⊕ C1 ⊕ C3 ⊕GfMult2(C2 ⊕ C3 ⊕ SubroundV alue2)
27: M3 ← C0 ⊕ C1 ⊕ C2 ⊕GfMult2(C3 ⊕ C0 ⊕ SubroundV alue3)
28: return M
29: end procedure
30:

31: procedure GfMult2(I)
32: if I < 128 then
33: return I ∗ 2
34: else
35: return (I ∗ 2 + 27) mod 256
36: end if
37: end procedure

The ShiftRows and AddRoundKey steps have not been modified (Algorithm 7).
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Algorithm 7 The unmodified steps of the AES algorithm

1: procedure AddRoundKey(S,K)
2: return S ⊕K
3: end procedure
4:

5: procedure ShiftRows(S)
6: for i← 0 to 3 do
7: Rotate Si∗4:i∗4+3 by i positions to the left
8: end for
9: return S

10: end procedure

While Siemens put enormous efforts into modifying the AES algorithm and obfuscating the hard-
coded round keys, the actual purpose of the algorithm remains dubious. Due to the lack of any
individual encryption key, it cannot serve as a secure encryption function. Similarly, it does not have
a purpose as a hashing function, considering that it is a two-way function and the handshake already
uses SHA-256 for hashing. We therefore come to the conclusion that the modified AES algorithm only
adds to the obfuscation, but does not increase the overall security of the handshake in any way.

5.3. Challenge and Symmetric Key

The main goal of the whole key exchange algorithm is to securely transmit the challenge and a
symmetric key. The challenge is provided by the PLC and the symmetric key is randomly generated
by the client.
An ephemeral key and a randomly generated Nonce are used to encrypt the challenge and symmetric

key using AES-GCM. Note that the Nonce is not directly transmitted, instead the first IV derived from
the Nonce is transmitted. The ephemeral key is securely transmitted using the shared keys derived
in the previous section. The first shared key is used to encrypt the ephemeral key using AES-128.
To authenticate the resulting ciphertext, it is hashed using SHA-256 and encrypted with the second
shared key using AES-128.
Algorithm 8 describes the full key exchange and the values of all involved variables. These variables

are bundled together in a Blob structure (Table 1) and sent to the PLC.

Algorithm 8 The full key exchange

1: ClientPublicKey,DerivedSharedSecret← ECDH(PlcPublicKey)
2: Key0,Key1 ← DeriveSharedKeys(DerivedSharedSecret)
3: SK ← rng(16)
4: EncryptedSK ← AES128(Key0, SK)
5: Digest← SHA256(EncryptedSK)
6: EncryptedDigest← AES128(Key1, Digest)
7: N ← rng(12)
8: FirstIV ← AESGcmCounter0(N)
9: SymmetricKey ← rng(24)

10: Plaintext← Challenge2:17∥SymmetricKey
11: EncryptedChallenge,AuthenticationTag ← AESGcm(SK,N,P laintext)
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Table 1: Blob structure
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
0xfee1dead Length (200) 1 1 Symmetric Key Checksum Symmetric Key Flags
PLC Public Key Checksum PLC Public Key Flags ClientPublicKeyx

ClientPublicKeyx ClientPublicKeyy
EncryptedSK EncryptedDigest

F irstIV EncryptedChallenge
EncryptedChallenge AuthenticationTag

AuthenticationTag

5.4. Additional Obfuscations in the Implementation

The previous chapters provide a high-level description of the algorithms involved in the handshake
from the perspective of the client (TIA Portal or an HMI). However, when it comes to the actual
implementation on the S7-1500 Software Controller side, Siemens added further layers of obfuscation.

A notable obfuscation lies in the implementation of the Elliptic Curve Diffie-Hellman key exchange.
For the client, this follows the well-known textbook ECDH algorithm, which is also given in Algorithm 1
and with a screenshot of an annotated Ghidra decompilation in Figure 4a. Instead of a fixed key, the
client uses a random Nonce for every connection.
On the other hand, the PLC has a fixed public key and therefore one would expect the ECDH

algorithm to use the PLC’s corresponding secret private key to derive the shared secret. However,
doing it exactly like that would instantly reveal the secret private key in the disassembly. Siemens
mitigated that risk by implementing another obfuscated function, which uses the private key indirectly
by inlining the elliptic curve operations on it. The output of that function is not the shared secret, but
four intermediate values relative to the PLC’s private key and the client’s public key. Four hardcoded
matrices are raised to these values and then multiplied together to get the shared secret. Parts of this
can be seen in the screenshot of the annotated Ghidra decompilation in Figure 4b.
We can only assume that Siemens obfuscated this part to such an extent in order to keep the

hardcoded and unchangeable PLC private key secret under all circumstances. However, Claroty has
published in [29] that they managed to retrieve the PLC private key of hardware S7-1500 PLCs anyway.
They also demonstrated that the private key has further uses, such as maintaining the secrecy of PLC
passwords – another reason why Siemens put these significant efforts into obfuscating the private key.
Ultimately, this obfuscation and the resulting secrecy of the PLC private key do not prevent attackers

from disguising as a PLC in the handshake though. Instead of reimplementing the PLC side of the
handshake with an ECDH textbook algorithm (and failing due to the undisclosed private key), they can
always just run the obfuscated function and take the results of it. This technique of running obfuscated
code instead of analyzing it has already been demonstrated in subsection 4.2 when decrypting the
firmware image. Thanks to the x86 64 architecture of the S7-1500 Software Controller firmware, this
method does not even require processor emulation.
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(a) Client side (b) PLC side

Figure 4: Excerpts of annotated Ghidra decompilations of the key exchange code

5.5. Intermediate Values

To make the previously introduced algorithms better comprehensible, Table 2 shows intermediate
values calculated during a handshake for exemplary randomly generated values.
All values are given in hexadecimal. Values prefixed with 0x are stored as a single big integer while

all other values are stored as byte arrays.

Table 2: Intermediate values during a handshake
Input Name Step
0x8e6d4846b080f387e3d48858c54a40b7fb28dc02b706e25f PlcPublicKeyx ECDH
0x12fe2110375f5e3627148ac04f1c5473042275e4b1091567 PlcPublicKeyy ECDH
9a61448927a7ca9cca04270409370200495945b4 Challenge Key Exchange

Randomly Generated Value Name Step
0x140f25900db2ee9ff1fcea1f99e47e65b1edec84b48c7119 Nonce ECDH
d49d08c3390b2fce1698f2ff6197948e SK Key Exchange
ca1bd6399c718a9886a5b3ca48f3607e7e792997f9421587 SymmetricKey Key Exchange
bbdb4bad57c166df1f027a2a N Key Exchange

Calculated Value Name Step
0x44a5c5271a5a04d185aa4e622d8642f510da98f7e7e3b433 ClientPublicKeyx ECDH
0x742e73a48557454f55c7cc8348d3a7f6f516f0eb218474f7 ClientPublicKeyy ECDH
0x20ec8c108f20c78a56ec392bb7781226b34db0fd54cd2c3c DerivedSharedSecretx ECDH
0x17a089d0769561cf533f3f271096312d89b373d0c4aa2ef8 M0,0 DeriveSharedKeys
0xaa221afd220b8e44baae6927a2642edb520ef55d5aed198d M0,1 DeriveSharedKeys
0xd9eef4a83e821c72e9d2e920b2679defd223d17e79ba306c M1,0 DeriveSharedKeys
0xe85f762f896a9e30acc0c0d8ef69ced2764c8c2f3b55d01d M1,1 DeriveSharedKeys
af22e2debf3124ca46816d215567de4c73619b4a61c127c9e513dbd78a356649 Digest0 DeriveSharedKeys
ad73ebf1a80184bed13a4c772a98f75f3841f9302af5ef90b9d254507098372d Digest1 DeriveSharedKeys
99ccb39bd62347dd9a4cf0ff56986b91 Key0 DeriveSharedKeys
dbe035e522ba4609e0dd26de62460827 Key1 DeriveSharedKeys
fc4ebc6f2b42a65fbab9b55e4d1c3118 EncryptedSK Key Exchange
358c5c9eb4aa6d24770c82850acd96a662dc290c42f7f58b3a343cf2d5b3f0ce Digest Key Exchange
1db3f584de487b47e4833366dbaa4574 EncryptedDigest Key Exchange
bbdb4bad57c166df1f027a2a00000001 FirstIV Key Exchange
eb212e29a9c9a03ce8c72df820ae454ef84a9f2ef6bbc6862866e7e83008cbc2 EncryptedChallenge Key Exchange
e5c83bf2614b7d7f

6639598505ffe87a371c655a5098de81 AuthenticationTag Key Exchange
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Additionally, Table 3 shows intermediate states in the modified AES algorithm when calculating
the first derived key.

Table 3: Intermediate values of the modified AES algorithm
Value Step Line Description
ad73ebf1a80184bed13a4c772a98f75f ModifiedAES 1 Input
2a73ebbead018477a83a4c5fd198f7f1 ModifiedAES 2 Reorder

ModifiedRound Round 0
474ee63369bdb85bf53c428b6f7795fb ModifiedRound 12
e2b7d8a821ca09c5155d556554775fe7 ModifiedRound 13
e2b7d8a8ca09c5215565155de754775f ModifiedRound 14
2875b07752d2212aae4d9d01065f5e88 ModifiedAES/ModifiedRound 3/15

ModifiedRound Round 1
99d6092262e5daab31f7a8d4a7f641d9 ModifiedRound 12
c74ec3e45e78733c38ed49bd334765b6 ModifiedRound 13
c74ec3e478733c5e49bd38edb6334765 ModifiedRound 14
e25aec1411d44eb946d428b47a874709 ModifiedAES/ModifiedRound 4/15

ModifiedRound Round 2
1241caa1025dd973f4650fef1f140b73 ModifiedRound 12
257f94832de641425624dec10b160842 ModifiedRound 13
257f9483e641422ddec15624420b1608 ModifiedRound 14
e7c9a2d3bdfe8746409fb5fc17f7ae38 ModifiedAES/ModifiedRound 5/15

ModifiedRound Round 3
3df29924067b6032625a937915838fab ModifiedRound 12
9119a80e037f6f2af00b8df3e3b7924b ModifiedRound 13
9119a80e7f6f2a038df3f00b4be3b792 ModifiedRound 14
e8a832cc87b62580bb4c72406a932ab5 ModifiedAES/ModifiedRound 6/15

ModifiedRound Round 4
35bb942aa196e8719d6d84d98009e8db ModifiedRound 12
23ce166e77cdff84d567f3afaa9eff60 ModifiedRound 13
23ce166ecdff8477f3afd56760aa9eff ModifiedRound 14
99ccb39bd62347dd9a4cf0ff56986b91 ModifiedAES/ModifiedRound 7/15 Output

5.6. Plaintext Mode

A surprising discovery was made at the end of our research. If the fourth value in the Blob is set to
zero, the PLC ignores most values and expects the challenge and symmetric key to be transmitted as
plaintext values.
It is not entirely clear to us why plaintext mode exists. We have never observed it being used in

the wild. This leaves room for speculation: Either the fourth value could be a flag that purposefully
disables encryption to help with debugging. Alternatively, the fourth value could be a version indicator,
indicating that the handshake has been improved after initially introducing it in an insecure way.
If a client used plaintext mode, the connection parameters could be easily captured by an eaves-

dropper and used for a subsequent man-in-the-middle attack.
For completeness, the structure of the Blob in plaintext mode is depicted in Table 4.

Table 4: Blob structure in Plaintext Mode
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
0xfee1dead Length (200) 1 0 Symmetric Key Checksum Symmetric Key Flags
PLC Public Key Checksum PLC Public Key Flags Challenge

ignored
ignored

SymmetricKey ignored
ignored

ignored
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6. Conclusion and Outlook

In this paper, we have shown our process of reverse-engineering the S7-1500 Software Controller,
beginning with the decryption of a public firmware image to get the entire software-only PLC imple-
mentation and ending up with an algorithmic description of the communication protocol. We have
found various instances of code obfuscation and unique modifications to well-established cryptographic
algorithms in the legacy handshake. Despite these remarkable efforts by Siemens, our analysis shows
that the handshake itself only provides limited message integrity protection. Taking latest research
and common configurations into account, the PLC security system cannot be expected to withstand
any serious cyberattacks. Specifically, when a PLC is operated in the default passwordless config-
uration, an attacker with knowledge of the algorithms can freely connect to it and issue arbitrary
commands. In addition to that, researchers of Team82 at Claroty have shown that it’s possible to
extract the static PLC private key. This allows to forge messages on the wire via a man-in-the-middle
attack, and surprisingly also allows to break the password protection as the last line of defense in some
situations [29]. Finally, we have shown that changing a single bit in the handshake allows to bypass
the cryptographic parts altogether.

We can only assume that Siemens implemented such a complex handshake for reasons of vendor
lock-in. As per Kerckhoffs’ principle, the security of a trustworthy cryptographic system must depend
on the secrecy of the key and not on the secrecy of the algorithm. Due to the lack of a unique key per
PLC, the security of the legacy handshake depends solely on the secrecy of the algorithm and thereby
falls short on protecting the PLC communication from adversaries. By publishing the details of the
cryptographic system, we want to raise awareness of its issues and enable other researchers to perform
a thorough cryptoanalysis. This may reveal further deficiencies.
At the same time, we have published the steps and tooling of our reverse-engineering journey to

let other researchers continue from there. This should enable a plethora of follow-up explorations:
For once, it allows for a validation of the security of the current TLS-based handshake that is meant
to overcome the shortcomings of the legacy handshake. Likewise, further research may also reveal
additional surprises, just like the single bit to bypass the cryptographic handshake. Finally, additional
work on running the S7-1500 Software Controller inside QEMU would make it accessible to even more
researchers.
We have deliberately published the entirety of our research on the S7-1500 Software Controller,

but left out any private keys or sample code to connect to a PLC. This has been done to support
the legitimate work of fellow security researchers and creators of interoperable products, but without
disproportionally benefitting adversaries or “script kiddies” interested in abusing PLCs. Choosing
to publish on the S7-1500 Software Controller has been part of that decision. While similar to the
physical Siemens PLCs in theory, the actual cryptography of the Software Controller is different.
Should any follow-up research reveal further deficiencies, the impact would likely be limited to the
less popular and easier updatable Software Controller PLC.

6.1. A call to the industry

Just 10 years ago, most machines in the field could be attacked via plaintext protocols lacking any
kind of authentication [13]. The automation world is fortunately past that point, but this develop-
ment opens a Pandora’s box of new challenges: Improperly implemented cryptography, undisclosed
vulnerabilities, and missing processes for responsible disclosure continue to threaten the security of
automation systems. The good thing is that we have been there before in computer operating systems
and established working practices in the meantime. Sadly, it looks like we need to do it all over again
for the automation industry. For instance, a 90-day deadline for responsible disclosure of vulnerabili-
ties does not work in an industry where any fix needs to go through at least 3 layers of red tape and
requires a paid update. At the same time, this reality must not result in vulnerabilities being hoarded
or research being redacted to a point where it cannot be independently verified anymore.
We are therefore calling all fellow researchers to follow our example and share reproducible but
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responsible research on the security of industrial automation products. The state of PLC security
cannot be improved if people are forced to do the same work over and over again. History is apparently
repeating itself, as only actively used exploits and a push from the security research community
led to monthly OS security updates and mutually agreed responsible disclosure practices [5, 20].
Likewise, we also need to get the automation industry to the point where a fix can reach all affected
machines in 90 days. Ultimately, the next generation of PLC communication protocols should be
developed in the public to enable independent security reviews right from the beginning. We are
already seeing third-parties implementing the unpublished S7 communication protocol incorrectly and
thereby compromising its security even further.

As of now, adversaries have the upper hand and customers are losing: Considering that our initial
attempt to break the obfuscation of a single S7-1500 took only 6 person weeks in 2019, organized
adversaries certainly have the capacities to do the same and more. The existing culture of unpublished
and underspecified research is making life harder for legitimate security researchers, who want to
advance the state of industrial automation security. At the same time, the missing visibility into
PLC security issues hampers awareness at customers. They don’t even have an established process to
quickly roll out security updates to all machines [12].
Time has come to realize that automation products are just embedded computers and need to be

subjected to the same cybersecurity standards as the rest of the IT industry.
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A. Preliminary Table of ADONIS Hypercalls

Table 5: Hypercalls
eaxin ebxin ecxin edxin eaxout ebxout ecxout edxout Description
0x001 unknown unknown unknown unknown unknown unknown unknown Unknown
0x002 unknown unknown unknown unknown unknown unknown unknown Unknown
0x003 unknown unknown unknown unknown unknown unknown unknown Unknown
0x004 unknown unknown unknown unknown unknown unknown unknown Unknown
0x005 unknown unknown unknown unknown unknown unknown unknown Unknown
0x007 unknown unknown unknown unknown unknown unknown unknown Unknown
0x008 unknown unknown unknown unknown unknown unknown unknown Unknown
0x010 unknown unknown unknown unknown unknown unknown unknown Unknown
0x020 unknown unknown unknown unknown unknown unknown unknown Unknown
0x030 unknown unknown unknown unknown unknown unknown unknown Unknown
0x101 ignored ignored ignored unknown ignored ignored ignored Unknown
0x102 ignored ignored ignored unknown ignored ignored ignored Unknown
0x103 unknown unknown unknown unknown unknown unknown unknown Unknown
0x104 Index ignored ignored Success Value1 (hi) Value1 (lo) Value2 Unknown
0x105 unknown unknown unknown unknown unknown unknown unknown Unknown
0x106 unknown unknown unknown unknown unknown unknown unknown Unknown
0x202 unknown unknown unknown unknown unknown unknown unknown Unknown
0x204 Index unknown ignored Success 0 0 ignored Unknown
0x205 unknown unknown unknown unknown unknown unknown unknown Unknown
0x207 unknown unknown unknown unknown unknown unknown unknown Unknown
0x208 unknown unknown unknown unknown unknown unknown unknown Unknown
0x20a unknown unknown unknown unknown unknown unknown unknown Unknown
0x20b Index ignored ignored unknown ignored ignored ignored Unknown
0x301 Index ignored ignored unknown ignored ignored ignored Unknown
0x302 unknown unknown unknown unknown unknown unknown unknown Unknown
0x401 IOAPIC ID Register ignored Success Value 0 ignored Read I/O APIC Register
0x402 IOAPIC ID Register Value Success 0 0 0 Write I/O APIC Register
0x404 unknown unknown unknown unknown unknown unknown unknown Unknown
0x405 unknown unknown unknown unknown unknown unknown unknown Unknown
0x503 Region ID 0 Property Success Value (hi) Value (lo) Get Memory Region Property
0x504 Name Ptr 0 ignored Success Region ID ignored ignored Find Memory Region
0x601 0 unknown ignored unknown ignored ignored ignored Unknown
0x602 unknown unknown unknown unknown unknown unknown unknown Unknown
0x604 unknown unknown unknown unknown unknown unknown unknown Unknown
0x606 unknown unknown unknown unknown unknown unknown unknown Unknown
0x607 unknown unknown unknown unknown unknown unknown unknown Unknown
0x608 unknown unknown unknown unknown unknown unknown unknown Unknown
0x60a unknown unknown unknown unknown unknown unknown unknown Unknown
0x60c unknown unknown unknown unknown unknown unknown unknown Unknown
0x60d unknown unknown unknown unknown unknown unknown unknown Unknown
0x60f unknown unknown unknown unknown unknown unknown unknown Unknown
0x610 unknown unknown unknown unknown unknown unknown unknown Unknown
0x611 unknown unknown unknown unknown unknown unknown unknown Unknown
0x612 unknown unknown unknown unknown unknown unknown unknown Unknown
0x614 unknown unknown unknown unknown unknown unknown unknown Unknown
0x701 unknown unknown unknown unknown unknown unknown unknown Unknown
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